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LIQUID CRYSTALS, 1990, VOL. 8, No. 5 ,  651-675 

On the elastic properties of ferroelectric S,* liquid crystals? 

by MASAHIRO NAKAGAWA 
Department of Electrical Engineering, Faculty of Engineering, 

Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, 
Niigata 940-21 Japan 

(Received 2 November 1988; accepted 22 March 1990) 

On the basis of the symmetry consideration of the SE phase, a generalized 
elastic free energy of ferroelectric S y  liquid crystals is presented to account for the 
layer compression or dilatation and the layer distortion as well as c director 
deformation. The present elastic free energy is expressed in terms of three vectors, 
i.e. the c director and the wave vector and the spontaneous polarization vector. 
According to  the present S z  model with C2 symmetry, it is shown that there may 
exist 17 non-chiral, 4 chiral terms and 14 flexoelectric terms in the S,* phase. A few 
practical applications are also presented to elucidate some interesting elastic 
properties of S,* (or S,) in simplifed geometries. 

1. Introduction 
Some elastic free energy expressions of S z  liquid crystals have been proposed to 

account for thier macroscopic properties. First of all Pikin and Indenbom have 
conducted a phenomenological S,* free energy to explain the thermoelastic property 
near the S z - S ,  phase transition point ( T  = T') introducing the vector order 
parameter defined by [ I ]  

e = (n x v)(n - v )  

= ( n 2 n 3 ,  - n l  n3 7 O), (1 )  

where n = ( n ,  ,n2 ,n3)  and v = (O,O, 1) denote the n director pointing an average 
direction of the long molecular axes and the layer normal unit vector, respectively. 
Supposing an undistorted flat layer structure, Pikin and Indenbom expanded the free 
energy in terms of e, Ve and the spontaneous polarization P, as follows 

K 
2 

+ +a(T - Tc)e2 + $be4 

P2 + ppe - P, + pr(V x e) - P, + 2, 
21 

'FR = - (V x e)* + A(e.V x e) 

(2) 

where K is an elastic constant, A is the Lifshitz invariant related to the molecular 
chirality, a and fl are positive constants, pp and pr are the piezo and flexoelectric 
constants, respectively, and x ( > 0) is the dielectric susceptibility related to the local 
dipole-dipole interaction. In the approach of Piken and Indenbom, Ps is considered 
as a vector order parameter to be determined by minimizing the local free energy [ I ] .  

?This work was carried out at the Department of Mathematics, University of Strathclyde, 
Livingstone Tower, 26 Richmond Street, Glasgow GI IXH, Scotland. 

0267-8292/90 13.W $3 1990 Taylor & Francis Ltd 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
4
7
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



652 M. Nakagawa 

From equation (2), one immediately derives P, = --{p,e + pf(V x e)} which 
implies that the ferroelectricity in the S,* phase results from the piezoelectricity and 
the flexoelectricity. Applying equation (2) to practical problems, some thermoelastic 
properties of S y  have been understood qualitatively. It is noticeable that their free 
energy may allow us to account for a spatial variation of the tilt angle of n with respect 
to v as well as the variation of the azimuthal angle about v .  In general, however, since 
any spatially varying tilt angle perpendicular to v has to be accompanied with a 
certain layer distortion, a layer distortion energy coupled to V e  has to be included in 
eqation (2) as was discussed recently by Beresnev et af. [2] .  

To treat the layer distortions as well as the director deformation more system- 
atically, the Orsay group deduced an elastic free energy expanded in terms of the first 
order spatial derivatives of an axial rotation vector n(r) which relates the material 
deformation to the local frame. For the S,* phase with C, symmetry, ignoring some 
surface contributions which are to be equivalently transformed into a surface 
integration after certain integrations in part [4], the following elastic free energy 
expression was derived in the local frame of reference x-y-z as [3,4] 

where R,, !2," and R; denote the infinitesimal rotation angles about the x, y and z axes, 
respectively, in the local frame varying from point to point in space [3,4], y denotes 
the relative local layer dilatation along the layer normal, which may exist not only in 
a distorted layer structure but also in a flat one with SZ., = SZ,, = 0 [3,4]. From this 
aspect, we have to take account of a non-elastic (or independent of the elastic 
deformation) part of the free energy, which consists of a, c and P, as well as the elastic 
part corresponding to y = &/az of Orsay's free energy equation (3) to construct a 
more generalized free energy; here u(r) is the layer deviation, along the z axis, from 
the equilibrium position. In the Orsay expression, the z axis is taken as the layer 
normal, and c and v vectors lie in the x-z plane in the undistorted equilibrium state. 
Since a constant interlayer spacing is assumed in equation (3), we have the constraints 
for VQ, i.e. aQ,./i?x + aQ,/dy = 0 and dR,/az = dR,,/az = 0 from V x v = 0 and 
v = (SZ,., - R,, 1) in the 'local frame [3,4]. This local free energy expression was 
expressed in a laboratory frame by Rapin [5] (for S c ) ,  and later by Dahl and Lagerwall 
[6] for ( S z )  using a conventional vector notation. Linear terms of VQ, or D, D ,  and 
D, terms are pseudo-scalers and are concerned with the chirality, or broken symmetry 
with respect to the x-z plane of S,* [3]. Also the last B y 2 / 2  term represents a layer 
compression energy to be coupled to a!2,/az and dSZy/az, which are set to 0 in 
equation (3) [3,4]. In general such a spatial variation of the layer spacing has to be 
coupled to VQ. Apparently, however, these couplings are completely ignored in the 
Orsay expression (3) because the relation between y and Q could not be specified in 
their framework. In addition, as can be easily seen from the conservation law of the 
layer numbers free from any layer dislocation [3] V x v may not vanish in general for 
compressible smectics. Consequently it is not plasuible to assume that X l T / a z  = 
aQ,,/dz = 0 and aR,y/8x + an,./i?y = 0 for compressible smectics in contrast to  the 
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Elasticity in S,* phases 653 

assumption by the Orsay group to derive expression (3) [3]. From these respects the 
Orsay free energy for compressible Sc or S,* has to be reconsidered so as to take 
account consistently of the layer distortion accompanied with a compression or 
dilatation as well as the director deformation. 

From the point of view mentioned previously we shall put forward a somewhat 
generalized expression of S l  free energy, which includes a non-elastic free energy as 
well as an elastic energy, to study a layer distortion with a compression or a dilatation, 
as well as the c director deformation. In the present approach, we shall introduce a 
wave vector a, whose magnitude is variable concerned with the layer compression, 
such that V x a = 0 to assure the conservation of the layer numbers [3]. In #2 a 
theoretical formulation of free energy will be presented by means of a conventional 
tensor formalism to make a scalar (free energy) quantity instead of the symmetry- 
broken approach by the Orsay Group [3,4]. Several applications of the present model 
will be given in 53. Finally $4 will be devoted to a short summary of the present study. 

2. Theory 
In this section, let us derive an S,* free energy, which includes an elastic part as well 

as a non-elastic part, based on the traditional tensor formalism [ 131. The present 
vector field in the S z  phase is specified by three vector, i.e. the wave vector a(r), the 
c director, and the spontaneous polarization vector P,. While c(r) is assumed to be 
a unit vector, a(r) is defined as a vector whose magnitude depends on the interlayer 
spacing as will be mentioned later. In the present model, both Va and Vc are assumed 
to be first order quantities, which vanish in the equilibrium uniform state. Since the 
spontaneous polarization P, is induced by the flexoelectric effect related to Va and Vc 
as well as by the peizoelectric effect [I], it is also regarded as a first order quantity. 
According to the conventional terminology of the ferroelectricity of SE liquid crystals 
[ 11, let us call the total contribution of the piezo and flexoelectricities as ferroelectricity 
in the ferroelectric SE liquid crystal. In this sense we have certainly to distinguish the 
ferroelectricity in liquid crystals from that in solids [ 11. 

Now we shall first note that c and v are related to the n director by the following 
relation: 

n = vcos0  + c s i n 0 ,  (4) 

where 0 is the molecular tilt angle with respect to the layer normal and is assumed 
to be constant throughout the material in the present model (see figure I).  Here it is 
convenient to introduce an auxiliary unit vector p defined by 

p = v x c .  ( 5 )  

then c-p-v make a right handed orthogonal triad. Since v and c are assumed to be 
genuine vectors as well as P,, p is axial. It is noticeable that P, is introduced as a vector 
independent of p = v x c in the present model although P, is often assumed to be 
always parallel to p in a simple treatment [I]. Now a scaler quantity K(r) is assumed 
to be related to a(r) and v(r) = a(r)/la(r)l in the following manner: 

a(r) = 11 + Kcr>>v<r>, (6 a) 

or 

K(r) - a(r) - v(r) - 1, (6 b) 
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654 M. Nakagawa 

4a 
I 

n + 
I 

r' 

Figure I .  Definition of the vectors in the present model. Here n is the director along the 
average direction of the long molecular axes. v and c are the layer normal unit vector and 
the c director, respectively. p is defined by v x c .  a denotes the wave vector. 

where a(r) is assumed to satisfy the curl-less, or solenoidal condition for the disloca- 
tion free layers [3] as follows: 

V x a(r) = 0. (7) 
It should be borne in mind here that V x u(r) # 0 for a compressed or dilated layer 
structure [3]. At this point, one may find that the Orsay expression (3) cannot be 
extended straightforwardly to a compressible case as was noted in the previous 
section. K - K~ is also assumed to be a first order quantity; here K~ is the equilibrium 
value of K .  In a dimensionless form, la(r)l can be set to [3] 

= dA/dC(r), (8) 

where d, and dc(r) are the interlayer thicknesses in the S ,  and Sc phases, respectively. 
In the equilibrium state, since dc(r) = d, = constant, we have the following 
equilibrium value of K ,  or K ~ :  

KO = dA/dc - 1 

= secO - 1 

N 0 2 / 2  (for 101 G I ) ,  (9) 
where we replaced dc by d,cosO. The scalar, K is an isotropic scalar, which is 
independent of the frame of reference and its handedness. In general the non- 
derivative of K has to be included in the non-elastic part of the free energy because 
the free energy depends on the interlayer distance even in the homogeneous flat layers 
with an equi-interlayer distance as was previously noted by Ribotta and Durand [ 141. 

Now on the basis of the S,* symmetry, we shall express the free energy as follows: 

F = F(a, c, p, P,, Va, V c )  

= FL(v, c, p, va) + Fc(v,  c, P, V c )  + F J y ,  c, P, Va, Vc) + F*(v, c, P, Va, Vc) 

+ FAV, c, P, p,, Va, VC) + F",(V, c, P, K ,  PA + C ( V ,  c, P3 K ,  PA (10) 

where FL is the layer distortion energy density accompanied with a compression or 
dilatation, F, is for the c director deformation, Fh is a coupling energy between them, 
F* and F, represent the chiral and the ferroelectric free energies, respectively, and F,, 
and F,*, are the non-chiral and the chiral contributions of the non-elastic part of the 
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Elasticity in S,* phases 655 

total free energy, respectively. They include the layer compression energy as well as 
the dipole-dipole interaction between spontaneous polarization. Now, supposing the 
monoclinic structure with C ,  symmetry in the S,* phase, symmetry properties of 
F,,, = FL + F, + FLc, F*, Fr, Fne and F$ are defined by 

F,,, (v, C, P, V a ,  VC) = - v, - C, P, - V a ,  - VC) 

= F,,,(v, c, - P, V a ,  V c )  

= F,,,( - v, - c, - p, - V a ,  - V c ) ,  

F * ( v , c , p , V a , V c )  = F * ( - v , - c , p , - V a , - V c )  

= - F* (v, c, - p, V a ,  V c )  

= - F * ( - v , - c ,  -p,  - V a ,  - V c ) ,  

Fr(v, C, p, P,, V a ,  VC) = Fr(- V, - C, p, P,, - V a ,  - VC) 

Here ( c ,  p, v) -+ ( -  c, p, - v) and (c, p, v) + ( c ,  - p, v) represent 7c rotation about 
the p axis (or the two-fold axis) and the reflection with respect to the c-v plane, 
respectively. In equation (13) the ferroelectricity is defined as the non-equivalence 
between P, and - P, but not as the non-equivalence between p and - p, i.e. as non 
equivalence under reflection. Therefore the chirality of the material is not necessarily 
related with the ferroelectricity of materials as was first noted by Dahl and Lagerwall 
[6]. That is, even non-chiral terms may result in the ferroelectricity as will be 
elucidated later. 

Now our aim is to express the free energy F i n  terms of V a  and V c  as well as v ,  
K, c, p, and P, satisfying the previously mentioned symmetry property, or equations 
( 1  l ) - ( l5 ) .  It should be noted hereafter that K is related to the wave vector, a(r), 
through equation (6 b). The present free energy will be constructed to include up to 
second power of the first-order quantities V a ,  V c ,  K - tio, and P,. 

First, let us consider the elastic part of the S y  free energy. Noting that a , ,  = a,,, 
(or V x a = 0) and c - c = I ,  the basic scalar quantities expressed in terms of the 
first order quantities a,,,, c, /, P,, and ti - K" in terms of the c-p-v triad are given by 

( c  - V a  * c), (p - V a  - c)* ,  (p - V a  * p), 

( c  * V a  * v), ( p  - V a  * v)*, (v * V a  * v), 
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656 M. Nakagawa 

where we used the notations (X: VY * Z) for X,  T.;Zj and (X - Y) for X,  Y, for 
abbreviations [6], and * stands for the chiral (or the pseudo-scaler) quantity which is 
invariant under n rotation about p, or (c, p, v) -+ (- c, p, - v), and changes its sign 
under reflection operation with respect to the c-v plane, or (c, p, v) + (c, - p, v). 
Noting that the product of two chiral terms results in a non-chiral term, from 
equation ( 1  6 a) and ( I  6 b), we can easily count up the maximum combination numbers 
up to the second power of the first order derivatives. 

Non-chiral 
FL(V, c, P, Val : 13 

Fc(v,c, P, VC) : 4  

FLC(v, C, P, Va, Vc) : 8 

F*(v,c,p,Va,Vc) : 4 

F,(v, c, p, P,, Va, Vc) : 14 

Chiral 

Ferro 

(combinations of (1  6 a)), 

(combinations of ( I  6 b)), 

(combinations between ( 1  6 a)  and (16 6). 

(chosen from (16 a) and (16 b)). 

(combinations between (16 a)  and (I6 c), 
between (1  6 6) and (1 6 c)). 

(combinations between ( 1  6 c) and ( 1  6 d ) ) .  

Those combinations are explicitly given as follows: 

FL 

( 1 )  (c - Va - c)’, (2) (p - Va - c)’, (3) (p - Va - p)’, 

(4) (c * Va - v)’, (5) (p * Va * v)*, (6) (v - Va * v)’, 

(7) (c - Va * c) (p - Va - p) -+ (c * Va - p)’ = (2), 

(8) (c - Va - c) (v - Va - v) -+ (c - Va - v)* = (4), 

(9) (c * Va - c) (c - Va v) 

(10) (p * Va * p) (v - Va - v) --t (p - Va - v)’ = ( 5 ) ,  

( 1 1 )  (p - Va - p) (c - Va * v) 

(12) (v - Va * v) (c - Va - v), 

(13) ( p -Va .c ) (p .Va .v )  -+ ( v . V a - c ) ( p - V a - p )  = (11). 

F c  

( 1 )  (c - v c  * PI’, (2) (P - vc  * PI’, (3) (v . v c .  PY,} 

(4) (c vc  - p) (v * v c  * p). 
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Elasticity in S,* phases 

(6) (p - Va - c) ( v  - Vc - p) + (v - Va - c) (p - Vc - p) = (4), 

(7) (p - Va - v )  (c * Vc p) -+ (c - Va - v )  (p * Vc * p) = (4), 

(8) (p - Va - v )  (v - Vc - p) + (v - Va - v )  (p - Vc - p) = (3). 

657 

Here + means the equivalence after partial integration ignoring a surface con- 
tribution as is proved in Appendix A. Therefore, the underlind terms are reduced to 
construct the bulk elastic free energy. Thus 17 non-chiral and 4 chiral terms are 
found to be allowed in the bulk elastic free energy. Here if we put a - a  = 
( 1  + rc(r)), = constant, or K(r) = K ~ ,  as well as c - c = 1 = constant, then the 
present model can be reduced to the Orsay model expressed by equation (3) as shown 
in Appendix B. 

Next let us consider the ferroelectric part F,. Up to the second power of P, and 
Va or Vc, referring to equation (13), the possible combinations are given by, 

Fr 

(18) I (1 )  (c - Va - c) (v * PSI, 

(3) (P - Va * c) (P - PA, (4) (P * Va - P) (v  - P A  

( 5 )  (P - Va - PI (c * PSI, ( 6 )  (v - Va - v )  (v  - PSI, 

(7) ( v  - Va - v )  (c * P,), (8) (v  * Va P) (P * PSI, 

(10) (v  - Va - c) (c - P,), 

(12) (P - vc - P) (v  * PS), 

(14) (v  * vc * P) (P - P,). 

(2) (c * Va - c) (c - P,), 

(9) ( v  - Va * c) (v - P,), 

( 1  1)  (c * vc * P) (P * PSI, 

(13) (P - vc - P) (c * PA, 
All other combinations between equations ( I  6 c )  and ( I 6  a )  (or ( 1  6 b)) as (p - Va * c) 
(c * P,) are of course ruled out because of C, symmetry in the S,* phase specified by 
equation ( I  3). Therefore we have 14 ferroelectric terms related to P, and the c director 
deformation or the layer distortion. 

Finally let us consider the non-elastic parts of the free energy, or F,, (non-chiral) 
and F; (chiral) which must be closely related to the above derived elastic part. Up to 
the second order of P, and K - rc0 from equations ( I 6  c )  and ( 1  6 d ) ,  referring equation 
(14) and (15) with C2 symmetry, we have the following possible combinations: 

Fn, 
( 1 )  i ( K  - rc0)’ = {(a - v) - 1 - K ~ } ’  

( 2 )  (c * PA2? (3) (P * p,)2? (4) (v  - p,)2, ( 5 )  (c * PSI (v * PSI. 

(19) 
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658 M. Nakagawa 

Summarizing the results and classifying them again for convenience, we may write 
down the free energy as follows: 

(21) F = F, + Fa + F, + F, + Fa, + Fa + F* + Fp, 

where the components are defined by 

A A21 A 
F, = (c * Va - p12 + - (p - Va - p)’ + 2 (c - Va * c)’, 

2 2 2 

F, = 1 L (c - Va - v ) ~  + - L2 (p - Va - v)’ + - L, ( v  - Va - v )  2 

2 2 2 

LO + LI3 (c * Va - v )  (v - Va * v )  + - ( K  - x0)’, 
2 

+ B , ,  (C * VC * p) (v - VC - p), (24) 

F, = - C, (c - Va - p) (c * V c  * p) - C2 (p - Va - p) (p * V c  - p), (25) 

F,, = - MI (c * Va - v )  (p * Va - p) + M2 (c - Va - v )  (c . Va - c), (26) 

F,, = N, (c - Va - v )  (p - Vc - p) + N2 (p - Va - v )  (v  - Vc . p), (27) 

F* = D (v  * V c  * p) + D, (c - V c  * p) - D2 (c - Va - p) + D3 (p * Va - v ) ,  (28) 

F, = d* (P2 - p) ( v  - V c  p) + d: (P, * p) (c - V c  * p) - d: (P, * p) (c - Va * p) 

+ d;” (P, - p) (p - Va - v )  - d, (P, * v )  (p * Va * p) 

- d2 (P, - c) (P - Va - P) + d, (P, - v )  (p - V c  - p) + d4 (P, - c) (p - Vc - p) 

+ d5 (P, - v )  (c Va * c) + d6 (P, - c) (c - Va . c) + d7 (P, - v )  (c - Va - v )  

+ d8 (P, c) (c Va - v )  + d9 (P, - v )  (v - Va - v )  + d,, (P, - c) ( v  Va * v )  

+ +do! (C * PSI2 + $ 4 2  (P . Ps)2 + +do3 ( v .  P,)* + do13 (C * P,) (V * P,) 

+ dd” (P * P,) + dd: ( K  - K O )  (P - P,) (29) 

where some symbols and the signs of each term are chosen to make comparison with 
earlier works [3-61 easy. Here F , ,  F,, and F, are the same as those derived by the Orsay 
group if we set a - v = (1  + K(r)) = constant, which corresponds to Lo -+ 00 in the 
present model. (See the last term in equation (23)) Apparently Lo ( >  0) in equation 
(23) suppresses a spontaneous layer compression or dilatation analogous to 4 in 
equation (3). A similar layer compression energy was introduced by Ribotta and 
Durand to study the mechanical instabilities from S, to S, under an external stress 
[ 141. The C, and C2 terms in F,, are for the coupling between the layer distortion and 
the c director deformations, whose effects will be studied in the next section. F,, F,,, 
and F,, are additional contributions related to the layer compression or dilatation. F* 
consists of pseudo-scalars, which are reduced to the result of Dahl and Lagerwall with 
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Elasticity in S,* phases 6 5 9  

a - v = ( 1  + K(r)) = constant [6]. The flexoelectric terms d* ,  dy - d: are con- 
cerned with the chirality of molecules and result in the spontaneous polarization 
components parallel to p. On the other hand, the other possible terms proportional 
to d, - d,, result from the non-chiral contributions and the components parallel to 
v or c. Therefore the latter contributions may exist not only in S,* but also in the Sc 
phase as was previously noted. The terms do, , do*, do3 and do,, in equation (29) are 
introduced to express the locally anisotropic dipole-dipole interactions suppressing 
the modulus of P, or IPS[. The D and D, terms represent the inherent twist and bend 
in the S,* phase, respectively. D may result in a spontaneous helicoidal structure along 
the layer normal as observed in the S,* phase. On the other hand, D, has a tendencey 
to cause a bend deformation of the c director along the layers. Therefore the D, term 
may destablize the uniformly twisted helicoidal structure [3]. It should be noted here 
that the D, term can be converted into a surface term in terms of the vector identity 
(v  - V x c) = - V * p if a - a = constant for the incompressible case studied by the 
Orsay Group [4]. The D, term may result in a twisted ribbon-like layer structure as 
was first pointed out by de Gennes [3]. The D, term is related to a layer compression, 
and has not been derived so far. This term may result in a spontaneous layer 
compression or dilatation along p and has a tendency to make the uniformly spaced 
layer structure unstable. On the other hand, the L, (>  0) term in equation (23) plays 
a role to suppress such an instability concerned with the layer compression or 
dilatation. Therefore a competition between them defines an equilibrium layer spacing 
as will be discussed in the next section. This relation just corresponds to that between 
the D, term in equation (28) and A ,  , in equation (22). In any case, only D is considered 
to be compatible with a uniformly twisted helicoidal structure. 

Finally we shall rewrite equations (22)-(29) in vector form utilizing some vector 
formulae given in Appendix C .  

A A 
2 2 Fa = ( 1  + ~ ) ' ( ( p  - v X p - C v X C)/2}* + ( 1  + K)*(C - v X p)' 

A 
2 + ( 1  4- K),(p . v  X C),, (22 a)  

L L L3 FA = -! (C - VK)' -k (p - VK)' -k - ( V  * VK)' + I!,,, (C - VK) ( V  - VK) 
2 2 2 

Lo + T ( K  - 
L 

F, = -! B ( v .  V x c)' + - B2 (V . V  x p)'  + - B3 {(C . V  x c + p . V  x p)/2}, 
2 2 2 
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660 M. Nakagawa 

F* = - D { ( P ’ V  x p + c . V  x ~ ) / 2 }  + Dl ( v ’ V  x C )  

- D2 ( I  + K )  {(p - V x p - c * V x c ) / 2 }  + D ,  (p * VK), (28 a)  

Fp = d$ (P, * p) - d* (P, * p) {(p . V x p + C ;  V x ~ ) / 2 }  

+ d? (P, * P) (v * V x C )  - d;” (P, - p) (1 + K) {(p - V x p - c - V x c)/2} 

+ d;” (P, * P) (P * V K )  + d, (P, - v) (1 + K) (c - V x p) 

+ d2 (P, - C )  (1  + K )  (c - V x p) + d, (P, - v) (v - V x p) 

+ d4 (P,. C )  (v - V x p) + d5 (P, - v) (1 + K) (p * V x c )  

+ 4 (P, - C )  (1  + K )  (P * V x C )  + d, (P, * v) (1  + K) {(p - V x p) 

- ( c ’ v  x c ) / 2 }  + dg (P,*c)  (1 + K) {p * V x p) - (C . V  x ~ ) / 2 }  

+ 4 (P, - v) (v * VK) + dlo (P, - c )  (v - VK) + idol (c P,)’ + ido2 (p Ps)2 

(29 a)  + +do, (V ’ P,l2 + do13 (C ’ p,) (V ’ p,) + dd: ( K  - K O )  ( P  ’ p,). 

3. Applications 
In this section we present some applications of the present model. For simplicity, 

neglecting the anisotropy of the local dipole-dipole interaction, we shall assume 
hereafter do, = d,,? = 4, = d,,, 4 1 3  = 0, dd: = 0. The do and do* just correspond to 
x-l  and pp, respectively, in Equation (2) as proposed by Pikin and Indenbom [l]. 

3.1. Layer compression in the surface stabilized geometry 
In this subsection, we shall treat the problem of a spontaneous layer compression 

which may exist even in a uniformly aligned S z  thin sample, or in the surface stabilized 
sample. 

First let us assume that V c  = Vp = Vv = 0 setting the triad c-p-v to 

In addition K(r) is assumed only to be a function of y .  The geometry is schematically 
depicted in figure 2. In this case, the free energy density F is simply given by 

L2 LO F = - (p - Va - v)’ + - {(a v) - 1 - K ~ } ~  + D, (p - Va * v) + d$ (P, - p) 2 2 

+ d;” (P, - p) (p  - Va - v) + $lop:. (31) 

P, = - d;’ {d,* + d;C(p - Va - v)}p. (32) 

Now, minimizing equation (31) with respect to P,, one has 

Substituting this into equation (31) and putting K = a * v - 1 = a; - 1 and noting 
Va * v = VK given in equation (C4) of Appendix C ,  we have 
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Elasticity in S,* phases 66 1 

t t 

Figure 2. Definition of the coordinates. Here c, p and v are assumed to  be coincident with 
the x, y ,  and z axes, respectively. P,y denotes the y component of the spontaneous 
polarization vector P,. Here d is the sample thickness. 

where L2 and & are defined by 

Then the Euler-Lagrange equation reads 

d 2 K  1 
dy2 At - ( K  - KO) = 0, -- (35) 

where 1, = (L2/Lo)l’2 is a relaxation length of the layer compression. Therefore a 
possible solution is simply given by 

~ ( y )  - K~ = Acosh(y/A,) + Bsinh(y/A,). (36) 

Substituting this into equation (33), the averaged free energy density g can be given 
by 

+ 4 2  

g = i j  d y F  
~ 4 2  

LO LO = - (A,/d) sinh (d/A,)A2 + - (AL/d) sinh (d/1,)B2 
2 2 

D (d,* 1’ 
2, 2dO 

+ 2 (AL/d)sinh(d/21,)B - - (37) 

Minimizing equation (37) with respect to the unknown coefficients, A and B, one 
readily finds 

A = 0, (38 a) 
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662 M. Nakagawa 

Hence we have the following solution which represents a spontaneous layer com- 
pression or dilatation, 

This result implies that the spontaneous layer compression ( 0 , y  < 0) or dilatation 
(0, y > 0) can be induced by the chiral coefficient D,. Finally, from equation (32), 
the y component of spontaneous polarization PS.“( y )  is given by 

In the equation (40) the first term is concerned with the piezoelectric effect, which has 
so far been investigated [I], and the second term d:, stands for the flexoelectric 
contribution related with the layer compression introduced in this paper. Therefore 
even if there is no spatial variation of c, p and v in a surface stabilized S z  sample, the 
spontaneous polarization may vary spatially along the sample thickness due to the 
possible chiral d: and 0, terms. 

3.2. Layer distortions in the surface stabilized geometry 
In this subsection, let us discuss the layer distortion in the 71 twisted state of the 

surface stabilized S: and Sc samples based on numerical computation. While the 
significance of the coupling effect between the layer distortion and the director 
deformation may be inferred as seen from equation (25 a),  there has been no report 
so far for such a coupling effect. In this respect, it seems to be worth while to study 
such a coupling effect on a distorted layer structure based on equations (22)-(29) or 
equations (22 a)-(29 a).  

To make the present problem mathematically tractable we shall ignore the spatial 
change of K(r) or the corresponding terms with VK in the present free energy as a first 
approximation and also assume that la1 N 1 and I K I  < 1 under a soft layer com- 
pression or dilatation. In this case the total free energy density F can be given by 

F = l( B v - v  x c)2 + - ( V ’ V  B2 x p), + - B3 {(P’V x p + c - v  x C)/2j2 
2 2 2 

Lo - C, (p - Va - p) (v  * V x p)) + - {(a - v) - 1 - K ~ } ~  

- D { ( p - V  x p + c - V  x c)/2} + D , ( v - V  x c) - D, (c .Va .p )  

2 

+ da (P, * p) - d* (P, * p) {(p . V x p + c * V x ~ ) / 2 }  

+ d: (P, * p) (v * V x c) - d: (P, - p) (c - V a  - p) - d ,  (P, * v )  (p * V a  - p) 

- d, (P, c) (p - Va * p) + d, (P, - v) (v  - V x p) + d4 (P, - c) (v - V x p) 

(41) + d5 (P, - v )  (c - V a  * c) + d6 (P, * c) (c . Va - c) + +do P:. 
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Elasticity in S,* phases 663 

First, minimizing F with respect to P,, one finds 

P, = - d i 1 [ d , * p  - d * p { ( p * V  x p + c * V  x ~ ) / 2 }  + dyp(v .V  x C )  

- d:p(c Va - p) - d,v(p - Va - p) - d2c(p - Va - p)  + d,v(v - V x p )  

+ d4C(v - v X p)  + d5v(C * Va * c )  + 4 C ( c  - Va * C) ] .  (42) 
It may be noticeable here that there exists three components of P, along p, c, and v 
in general. That is, the direction of P, is not necessarily coincident with p = v x c 
as has first been pointed out by Dahl and Lagerwall [6]. Then, ignoring the trivial 
constant - (d,*)2/(2d0), the free energy density F reads, 

B B2 B, F = =! ( C  - VC - p)' + L ( p  - VC * p)' + 
2 2 2 

(v * VC p)' 

+ D ( V  - vc - p) - Dl  (c - vc * p) - D2 (c * Va * p) + - LO (K - K,),, (43) 
2 

where the coefficients with underbars are defined by 

d: d: - d, ds - d4d6 c, = c, - 

c, = c, - 
d0 

- 7 

d l  + d2d4 

d0 
- 

(44 h) 

(44 i )  

d,*d* D = D--, 
d0 

(44J ) 
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664 M. Nakagawa 

To simplify equation (43) further, we shall put BI = B2 = B3 = B, @ I 3  = 0. 
( A , ,  - B)/2 = A I 2  - B = = A ,  _C, = _C2 = _C, and D + 1)’ = 0, noting the 
following relations, together with the previously noted assumptions V a  * v = VK N 0 
and la1 N 1 or I K I  < I ,  

( c  * vc p)’ + (p - vc - p)’ + (v * vc * p)’ 

= c i . j P t c k . j P k  

= { ( c  - V a  - c) + (p - V a  - p)}’ + 2{(p V a  - c)’ - (c - V a  - c) (p - V a  - p)} 

= {(V a) - (v - V a  - v)}’ + 2{(p - V a  - c)’ - (c - V a  - c) (p - V a  - p)} 

= {(V - a) - (v - VK)}’ + 2{(p - V a  - c)’ - ( c  * V a  - c) (p - V a  * p)} 

= (V * a)’ + 2{(p - V a  - c)’ - (c * V a  - c) (p * V a  * p)}, (44 0) 

( c  V a  - p) (c - V c  * p) + (p * V a  - p) (p * V c  * p) 

= { ( c  - V a  - c) + (p - V a  - p)} (p - V c  - p) 

+ { ( c  * V a  - p) (c - V c  - p) - (c - V a  - c) (p * V c  - p)} 

= {(V * a) - (v - V a  - v ) }  {(V - c) - (v - V c  - v)} 

+ { ( c  - V a  * p) (c - V c  - p) - (c - V a  - c) (p - V c  - p)} 

= {(V * a )  - (v - VK)} {(V * c) + (v - Vv * c)} 

+ { ( c  - V a  - p) (c * V c  - p) - (c * V a  - c) (p V c  * p)} 

N (V * a )  ( V - c )  

+ {(p - V a  * c) (c V c  - p) - (c - V a  - c )  (p - V c  - p)}, 

(v * vc - p) = (p vc - v) - (c - v x c). 

(44 PI 

(44 9) 
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Elasticity in S,* phases 665  

(p - V c  - v )  + ( c  - Va - p) = (p - V c  - v )  - (p - V c  - a )  

= - (pa VC.V)K 

2: 0. ( 4 4  r )  

Then, ignoring such surface contributions as (c,,,c, - c , . , ~ , ) , ,  and (p - V a  - c ) ’  - 
( c  Va  - c )  (p - V a  . p), etc., one finally has 

A B 
F = = (V - a)’ + = {(V - c)’  + (V x c ) ’ }  - Dc - V x c + D,v - V x c 

2 2 

Here it should be borne in mind again that the constraints for a(r )  and c (r )  are 
given by V x a(r)  = 0 and a(r)  * c ( r )  = 0, and c ( r )  * c ( r )  = I .  In equation (45) the 
- C term stands for the coupling effect between splay deformations of a ( r )  and c(r) .  
Therefore, although the spontaneous splay of the layer structure due to the term 
proportional to (V * a )  cannot be allowed in the S y  or the Sc phase, a splayed layer 
structure may be caused by a possible splay of c ( r )  or by the existence of (V - c). In  
fact such an induced splay layer structure will be shown to be stabilized by the 
coupling effect between (V * a) and (V - c ) .  

Figure 3.  Definition of the coordinates. Here the wave vector a is assumed to be in the y-z 
plane. d is the sample thickness. 

As a simple example we shall restrict ourselves to a one dimensional geometry as 
shown in figure 3, where d denotes the samples thickness. Here we assume that a (  y )  
is in the y-z  plane, and that the y axis is normal to the two bounding plates. 
Normalizing the free energy density F and denoting y / d  as t, we find 

- F = Fd’IB 
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666 M. Nakagawa 

where A* = A/& C* = _C/& D* = Dd/& 0: = Q, d/B, and L,* = Lod21& and we 
put a2 = constant = 1 because of the constraint V x a(t) = 0. Therefore the tilt 
angle O(z) of the wave vector a(t) measured from the z axis can be given by 

q7) = tan-’ {u,,(z)}. 

In addition ~ ( t )  can be determined by 

K ( 5 )  = { I  + U , ( t ) 2 } 1 / 2  - 1. 

Minimizing _F of equation (46) under the following constraints 

a(r) - C(T) = 0, 

and 

c(7) * C(7) = 1, 

we find the following set of ordinary differential equations: 

d2c, 
dr2 
- -  

where p ( z )  and o(z) are the Lagrange multipliers to be determined simultaneously so 
as to satisfy the constraints (49 a) and (49 b). Assuming the R twist state between two 
plates, the boundary values of a(r) and C ( T )  may be assumed simply as follows 

and 

respectively. (see figure 3.) Then the total free energy E,,, per unit area can be given 
by 

f ‘  

It may be noticeable here that f,,, is equal to n2/2  for the uniformly twisted state 
without any layer distortion, or for a(7) = ( O , O ,  1) and c(z) = (cos (RT), sin (RT), 0). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
4
7
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Elasticity in S,* phases 

2n 
667 

-2 
Figure 4. Dependence of the free energy on the coupling constant C* between the splay 

deformations of a and c for S,*. Here the splayed layer structure is metastable for 
C* < 1.35, and stable for C* > 1.35. 

We solved numerically the above non-linear ordinary differential equations 
(50 a)-(50 d )  by means of the conventional finite difference method combined with an  
iteration scheme. As a n  example, let us show here the numerical results for A* = 4 
and L,* = 10, K~ = 0. First we shall present the result for S,* assuming that 
D* = - 1 and D, = I .  Varying the coupling constant C*, we found that the splayed 
layer structure for C* > 1.35 corresponds to the stable state rather than the uniform 
71 twist state without any layer distortion as shown in figure 4. Therein the splay layer 
structure for C* < 1.35 corresponds to the metastable state which is energetically 
unfavourable relative to  the uniform n twist. The corresponding layer tilt angle O(T) 
and the layer compression K ( T ) ,  determined by equation (47) and (48), respectively, are 
shown in figure 5. From these results the coupling between a(r) and  c(r) is found to 
play a significant role for the layer structure in the surface stabilized geometry of S y .  
Next, supposing an S, phase or putting D* = 0: = 0 with the previously chosen 
parameters, we solved again equations (50 a)-(50 d )  in the same manner for various 
C* values. Remarkably, in this case, it is found that the distorted layer structure can 
always be more stable for any C* # 0 than the Ir-twist state without any layer 
distortion as seen in figures 6 and 7. Therefore it may be considered that this kind of 
layer distortion can be observed not only in S y  but also more often in the S, phase. 

4. Discussions and conclusions 
In this paper we have derived an extended elastic energy of ferroelectric S y  liquid 

crystals introducing the variable wave vector related with the interlayer spacing. From 
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668 M. Nakagawa 

Figure 5. Dependences of e ( r )  (solid curves) and ~ ( t )  (dashed curves) on t for SE. Here curves 
a and b are for C* = 1 and C* = 2, respectively. 

Figure 6 .  Dependence of the free energy on the coupling constant C* between the splay 
deformations of a and c for S c .  Here the splayed layer structure is stable for any C*. 
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30 
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Figure 7. Dependence of O(t) (solid curves) and K ( T )  (dashed curves) on T for Sc. Here curves 
u and b are for C* = 1 and C* = 2, respectively. 

the symmetry argument of the S;C phase, we have found 17 non-chiral and 4 chiral 
elastic coefficients in the bulk free energy related to the layer compression or dilatation 
and the layer distortion as well as the c director deformations. Furthermore we have 
derived 14 flexoelectric constants. If we suppose an incompressible S y  phase or 
a - a = (1 + K(r))’ = constant as well as c * c = 1 in the present model, then we 
have 9 non-chiral terms and 3 chiral terms consistent with the Orsay expression (3). 
This result can also be easily derived assuming V x(one of the directors in the 
orthogonal triad) = 0 in the result derived by Liu for the monoclinic biaxial nematics 
[ 121. (See Appendix D.) As examples of applications some simplified problems were 
discussed under the surface stabilized geometry. First we have studied the layer 
compression as can be observed in a uniformly aligned S,* film sample. In this case the 
spontaneous polarization may vary along the sample thickness direction without any 
layer distortion and any c director deformation. In practice such a layer compression 
may be accompanied with the line dislocations parallel to the bounding plates and 
perpendicular to the layer normal. Next the energetical stability of the distorted layer 
structure in the rt twist state in the S, and S;C phases was numerically investigated. 
From the present results, an appropriate strength of the coupling between the splay 
deformations of the wave vector a and the c director was found to make a splayed 
layer structure with the n: twist of the c director in the surface stabilized S y  sample 
stable. In addition, i t  was concluded that this kind of distorted layer structure may 
be observed not only in an S,* phase but also in an S, phase consistent with the 
experimental observation [lo]. Remarkably it  was also shown that such a distorted 
layer structure in an S, phase is always more stabilized than the n: twist state without 
any layer distortion. An application of the present theory to the chevron structure 
observed in the surface stabilized geometry [7-1 I ,  15,161 will be reported in a later 
paper [ l l ,  18, 191. 
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Appendix A 
As an example let us prove the following relation with the assumptions of the 

partial derivatives such that a k , i j  = a k , j i  and C k . i j  = c k . j i .  

r r 

where I, is a surface integral which will be derived later. To prove equation (A l), let 
us first note the following identity. 

V i C k  - C i v k  = &p/mv/C,&p;k 

- - P p E p i k .  

Then, from equation (A I )  and (A2), Is can be expressed as 

Is = [ d r P p E p i k a j , i P j C / . k P / .  

Now let us divide the whole volume V ,  covered by the surface S, into N cells 
(e.g. simple cubes or more generally polygons) with volume A V'"' (a = 1,2,. . . , N ) .  
Then (A 3) becomes 

I S  = l im 1 d x l  d x 2 d x ~ P p E p ~ k a ] , t P ] c / . k P / ;  (A 4) 
N - m  U = I  " I  AVIUJ 

here the symbol AV'"' denotes the volume integral in the lrth cell. Since one can choose 
the coordinate axes, X?) - Xp'-X3((1) to the vector traid c-p-v a t  any point in each 
cell, one can put c = (1,0,0), p = (0, 1,O)  and v = (0,0,1) at a point in each cell. 
In other words, there exists a proper rotation matrix Q!;) such that Q;;'c, = d,, ,  
Q$'p, = bI2  and Qlq'a, = b,, at a point in each cell. Since we take such a limitation 
as AV'"' -+ 0, QlT' can be treated as a constant matrix in each cell with the volume 
AV'"' when we carry out the integration (A4) over AV'"' in each cell. It should be 
noted, however, that a gradient of vectors such as a,,  or c1,] may not vanish in the cell 
and should be transformed as tensors in the following manner, 
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Elasticity in S,* phases 67 1 

~r 

where we noted the continuity of the derivatives, or ~ & 3  = c;,~. Then integrating the 
first and second integrands with respect to X p )  and XI."', respectively, we have 

where (dSp', dSr ' ,  dSp))  = (dXp' dXj" ' ,  dXp' dXi"', dX{"'dXp'), the symbol AS'") 
denotes the surface integral on the ath cell; here the sign of the surface integration was 
selected to be positive towards the outward surface of the cell. Since the surface 
integrals on the interfaces between neighbouring cells cancel each other out, the 
summation over a over the cells in equation (A5) can be reduced to the cells which 
have the common surface with the outer surface S of  the volume V ,  or 

I ,  = lim 1 [ j d S ~ ) ( a : c ~ , )  - d S \ ~ ) ( u ~ c ~ , ) ]  
N+m a outercell (AS(u)A.y) ")AS) 

= surface contribution. (A 10) 

where (AS'"'AS) represents the common surface between AS'") and S. Of course the 
proof of equation (A 10) is not unique in showing that I ,  is the surface contribution. 
Generally in a similar manner we have the following relations 

(Ul - vu - u,)(u, * vv - u,) 

= (u, * VU - u2)(uI - VV - u,) + surface integral 

4 (u, - vu - u2)(u, * vv * u,) 

({UI, u2, u33 u41 = {c,  P> 

( { U ,  V) = {a, c } ) .  

If we put a * a = 1 (or a = v )  as well as c - c = I ,  these results will be immediately 
reduced to those utilized in the Orsay approach [3-51. 
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Appendix B 
Here we show the equivalence between the present theory and the Orsay theory 

when we put a * a = (1  + K(r))* = constant. First of all we have to note the follow- 
ing relation between the triad c-p-v and the triad e,  -e,-e, in the local coordinate 
X-Y-Z. 

where R,, Q, , and QZ are the infinitesimal rotation angles about the x, y, and z axes, 
respectively [ 3 ] .  From this we have the relations between the tensor notation and the 
symmetry broken expression by the Orsay Group [6] 

(c * vc - p) = a q / a x ,  (B 2 a) 

(p -  Vc -p )  = anJay, (B 2 6) 

(v * vc * p) = aR,/az, ( B 2 4  

(c . v v .  p)  = -aSZ,/ax, (B 2 4 
(p . v v .  p) = -an,/ay, ( B 2 4  

( C * V V * C )  = afl,/ax. (B 2 f )  

Substituting these relations into equations (22), (24), (25) and (28), we can readily find 
equation ( 3 )  as derived by the Orsay Group [4]. 

Appendix C 
We shall summarize here some vector formulae derived under a c = c - p = 

p - a  = 0, p = v x c, c - c  = p - p  = v - v  = 1, a = (1 + K)V as well as 
V x a = 0 .  

c - v c - p  = v - v  x c = - v . p  + v * v p * v ,  (C 1) 

p - v c - p  = v - v  x p = v - c  - v - v c - v ,  (C 2) 

v - v c - p  = - c . v  x c + p - v c - v  = - p ' V  x p - c . v p . v  

= - c - v  x c - p - v v - c  = - p . v  x p + c - v v - p  

= - ( C ' V  x c + p * v  x p)/2, (C 3 )  

= a,,,v,, (C 4) 

= -(1 + K)(C - v  x p), (C 5 )  

= ( I  + K)(P'V x c), (C 6) 

= (1 + K)(P'V x p - c - v  x c). (C 7) 

K , ,  = a,,,v, + a,v,., 

( p - V a - p )  = - ( p * V p . a )  = (p x V x p ) - a  = (a x p ) - ( V  x p) 

( c - V a - c )  = - ( c . V c - a )  = (c x V x c ) . a  = (a x c ) - V  x c 

2 ( p - V a - c )  = (a x c ) - V  x p - (p x a ) - V  x c 
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In the derivation of equation (C 3), we noted the relation (p Vv - c) = (c - Vv - p) 
with v i  = a,/lal. 

Appendix D 
Let us show that the Orsay free energy equation ( 3 )  can easily be derived from 

Liu’s free energy for the biaxial nematics [12]. First we shall write explicitly the free 
energy for the monoclinic nematics derived from Liu’s result for the triclinic nematics 
in a similar way to the present text [ 121. 

2F = A , ,  (c - Va - c)’ + A,,(p - Va - c)’ + &(a - Va - c)’ + AJc * Va - p)’ 

+ ~, (p - Va * p)’ + A,(a - Va * p)’ + 2A,,,,(a - Va * c)(c - Va * c) 

+ 2A,,,(a - Va - c)(p Va - p)+ 2A,,,(c Va - c)(p - Va p) 

+ 2A,,,,(p * Va - c)(c - Vc - p) + 2A,,,(p - Va - c)(a * Va - p) 

+ ~A,,,(c - Va * p)(a * Va - p) + B,,(c * V c  - p)’ + Bpp(p - Vc - p)’ 

+ Bup(a - Vc - p)’ + 2B,,,(a - Vc - p)(c - V c  - p) 

+ 2C,,,,(a - Va * p)(a - Vc - p) + 2CUp,,(a - Va - p)(c - V c  - p) 

+ 2C,,,(c - Va - p)(a - Vc - p) + 2C,,,,(c - Va - p)(c * V c  - p) 

+ 2Cp,,(p - Va - c)(a - Vc p) + 2Cp,,,(p * Va - c)(c * V c  - p) 

+ 2Cpppp(p * Va - p)(p - Vc - p) + 2Cu,,(a - Va c)(p - V c  - p) 

+ 2C,,,(c - Va * c)(p - Vc - p), (D 1 )  

F* = D(a.Vc.p) + D,(c-Vc.p)  - D,(p.Va.c) + D,(c.Va-p) 

+ &(a * Va - p), (D 2) 

where A,, B,, C,, and D, are appropriate elastic constants. These energy densities 
satisfy the monoclinic C, symmetry such that 

F(a, c, p, Va,Vc) = F(-a, -c, p, -Va, -Vc) 

= F(a, c, -p, Va, Vc), (D 3) 

F*(a, c, p, Va, Vc) = F*(-a, -c, p, -Va, -Vc) 

= - F*(a, c, - p, Va, Vc). (D 4) 

Therefore the total numbers of the non-chiral and chiral elastic terms are 25 and 5, 
respectively, consistent with Kini’s result for the monoclinic biaxial nematics [ 131. 
Then, to eliminate the surface contributions as shown in Appendix A, the following 
relations can be utilized: 

(X * Va - c)(Y * Va - p) = (Y - Va - c)(X * Va - p) + surface contribution, (D 5 a) 

(X - Vc * p)(Y * Vc - p) = (Y * Vc * p)(X - Vc * p) + surface contribution, (D 5 6 )  

(X * Va * c)(Y * Vc - p) = (Y - Va * c)(X * Vc - p) + surface contribution, (D 5 c) 

(X * Va * p)(Y - Vc * p) = (Y * Va - p)(X - Vc - p) + surface contribution (D 5 d )  
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674 M. Nakagawa 

where (X, Y) = (c, p, a). Now we derive the following bulk energy FB. 

~ F B  = A,,(c - Va - c)’ + ~ , , ( p  - Va - c)’ + A,,(a - Va - c)’ + A,(C - va p)’ 

+ A,(p - Va - p)’ + A,(a * Va - p)’ + 2~,,,,(a - Va - c)(c - Va - c) 

+ 2(Aoc,, + A,,,)(a - Va - C)(P - Va - PI 

+ 2(A,, + A,,,)(c - Va c)(p - Va P) + 2A,,(c - Va - p)(a - Va - p) 
+ B,(c - V c  - p)’ +B,,(p - V c  - p)’ + &,(a * Vc - p)’ 

+ 2B,,(a - V c  - p)(c - V c  - p) + 2C,,(a * Va - p)(a - V c  - p) 

+ 2(C,,,, + C,,,,)(a * Va - p)(c - V c  p) + 2CCp,(c - Va - p)(c - V c  - p) 

+ 2(Cpc, + C,,)(P * Va * c)(a - vc - P) 

+ 2(CPCCC + CCCPC)(P - Va - c)(c - vc - P) + 2~,,,,(P - Va - P)(P * vc - P). 

(D 6) 
Then we have 20 non-chiral elastic terms for the bulk free energy [17]. If we assume 
further F(a, c, p, Va, Vc) = F ( f a ,  c, p, +Va, Vc)  = F(a, f c ,  p, Va, f V c )  = 
F(a, c, f p, Va, Vc), we can readily obtain the bulk free energy of the orthorhombic 
biaxial nematics with 12 non-chiral elastic coefficients [ 12, 131. Finally, assuming that 
there exists no layer dislocation, or a,,j = q,, i.e. (a * Va * X) = (X - Va - a) = 0 [3], 
we can derive the following results after some rearrangements for the elastic 
constants: 

2FB = ~ , , ( p - V a . c ) ~  + A,,(c-Va-c)’ + A,,(p.Va-p)’ + B, (c -Vc-p ) ’  

+ B,(p - V c  - p)’ + B,(a - Vp * c)’ + 2 ~ , , ( a  * vc - p)(c * vc - p) 

- 2C,(p - Va - c)(c - V c  - p) - 2C2(p Va - p)(p - Vc - p), 

D(a * V c  - p) + D,(c - Vc - p) - D,(p - Va - c). 
(D 7) 

F* (D 8) 
Now, together with the previous results, equations (B 2 a)-(B 2 f), we can find the 
Orsay expression for the incompressible S: given by equation (3). These results are 
obviously the same as equation (22), (24), (25) and (28) if we put 
a a = (1 + K(r))’ = constant, or K(r) = K,,, therein. 

= 
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